Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions.

نویسندگان

  • Parimal Sheth
  • Shyamali Basuroy
  • Chunyang Li
  • Anjaparavanda P Naren
  • Radnakrishna K Rao
چکیده

A recent study (Nusrat, A., Chen, J. A., Foley, C. S., Liang, T. W., Tom, J., Cromwell, M., Quan, C., and Mrsny, R. J. (2000) J. Biol. Chem. 275, 29816-29822) suggested that phosphatidylinositol 3-kinase (PI 3-kinase) may interact with occludin; however, there exists no evidence of direct interaction of PI 3-kinase with the tight junctions. Activation of PI 3-kinase by oxidative stress and its role in disruption of tight junctions was examined in Caco-2 cell monolayer. The oxidative stress-induced decrease in electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 were reduced by a PI 3-kinase inhibitor, LY294002. Oxidative stress-induced tyrosine phosphorylation and dissociation from the actin cytoskeleton of occludin and ZO-1 were reduced by LY294002. The regulatory subunit of PI 3-kinase, p85, and the PI 3-kinase activity were co-immunoprecipitated with occludin, which were rapidly increased by oxidative stress. Oxidative stress resulted in increased translocation of p85 from the intracellular compartment into the intercellular junctions. Pair-wise glutathione S-transferase pull-down assay showed that glutathione S-transferase-occludin (C-terminal tail) binds to recombinant p85. This study shows that oxidative stress increases the association of PI 3-kinase with the occludin, and that PI 3-kinase activity is involved in oxidative stress-induced disruption of tight junction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers.

Recent studies showed that c-Src and phosphatidylinositol 3 (PI3) kinase mediate the oxidative stress-induced disruption of tight junctions in Caco-2 cell monolayers. The present study evaluated the roles of PI3 kinase and Src kinase in the oxidative stress-induced activation of focal adhesion kinase (FAK) and acceleration of cell migration. Oxidative stress, induced by xanthine and xanthine ox...

متن کامل

Oxidative stress-induced disruption of epithelial and endothelial tight junctions.

Mounting body of evidence indicates that the disruption of epithelial tight junctions and resulting loss of barrier function play a crucial role in the pathogenesis of a variety of gastrointestinal, hepatic, pulmonary, kidney and ocular diseases. Increased production of inflammatory mediators such as cytokines and reactive oxygen species disrupt the epithelial and endothelial barrier function b...

متن کامل

Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers

Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight...

متن کامل

Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke.

BACKGROUND AND PURPOSE Phosphoinositide 3-kinase (PI3K)-γ is linked to inflammation and oxidative stress. This study was conducted to investigate the role of the PI3Kγ in the blood-brain barrier dysfunction and brain damage induced by focal cerebral ischemia/reperfusion. METHODS Wild-type and PI3Kγ knockout mice were subjected to middle cerebral artery occlusion (60 minutes) followed by reper...

متن کامل

Oxidative Stress Mediates the Disruption of Airway Epithelial Tight Junctions through a TRPM2-PLCγ1-PKCα Signaling Pathway

Oxidative stress has been implicated as an important contributing factor in the pathogenesis of several pulmonary inflammatory diseases. Previous studies have indicated a relationship between oxidative stress and the attenuation of epithelial tight junctions (TJs). In Human Bronchial Epithelial-16 cells (16HBE), we demonstrated the degradation of zonula occludens-1 (ZO-1), and claudin-2 exhibit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 49  شماره 

صفحات  -

تاریخ انتشار 2003